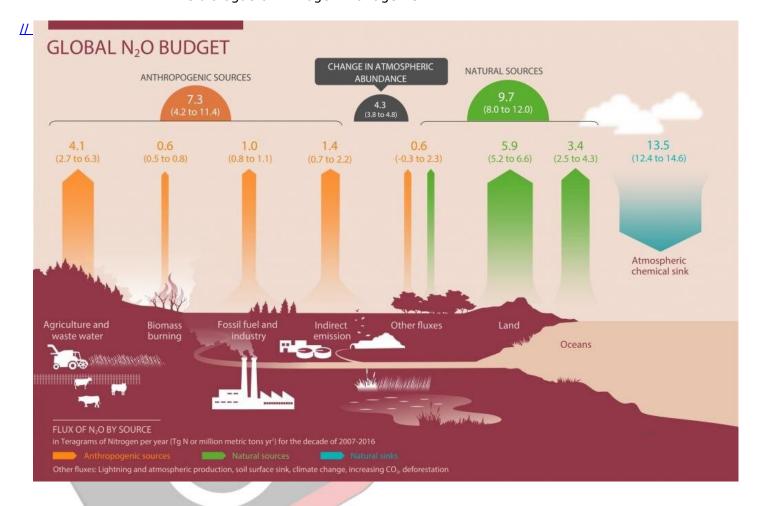


Increased Emissions of N20

Why in News


According to a recent research paper, human emissions of <u>nitrous oxide</u> (N_2O) have increased by 30% between 1980 and 2016.

■ The research was conducted through an international collaboration between the **International**Nitrogen Initiative (INI) and the Global Carbon Project of Future Earth, a partner of the World Climate Research Programme.

Key Points

- Nitrous Oxide (N₂O):
 - It is a greenhouse gas (GHG) 300 times more potent than carbon dioxide (CO₂).
 - It has the third-highest concentration, after CO₂ and methane (CH₄), in Earth's atmosphere among GHGs responsible for global warming.
 - N₂O is also the **only remaining threat to the** <u>ozone</u> (O₃) **layer,** for it accumulates in the atmosphere over a long period of time, just like CO₂.
 - It can live in the atmosphere for up to 125 years.
 - Its global concentration levels have increased from 270 parts per billion (ppb) in 1750 to 331 ppb in 2018, a jump of 20%.
 - The growth has been the quickest in the past five decades because of human emissions.
- Research and the Study:
 - This is the most comprehensive study of global N₂O emissions ever published, as it combines both natural and anthropogenic (man-made) sources.
 - The study found that 43% of the total emissions came from human sources and most N₂O emissions came from emerging countries like India, China and Brazil.
 - Increase in its emissions means that the climatic burden on the atmosphere is
 increasing from non-carbon sources as well, while the major focus of global climate
 change negotiations is currently centred on carbon, its emissions and mitigation.
 - It also highlighted the dichotomy of the climate crisis and global food security.
 - A major proportion of the N₂O emissions in the last four decades came from the agricultural sector, mainly because of the use of <u>nitrogen-based fertilisers</u>.
 - The growing demand for food and feed for animals will further increase its global emissions, leading to a direct conflict between the way countries are feeding people and stabilising the climate.
- Suggestions:
 - There are well-established practices and technologies like crop and manure management, the <u>use of bio-fertilisers</u>, to mitigate N₂O emissions which need to be utilised to their full extent.
 - Revised industrial and agricultural policies at the global level will reduce such

- emissions considerably.
- Reducing GHGs emissions will also have the co-benefits of reduced air and water pollution.
- There is a need to bring the non-carbon sources under the major global climate change negotiations.
- It is possible to slow down N₂O emissions if countries implement the <u>United Nations</u>
 Global Campaign on Sustainable Nitrogen Management, 2019 held in Colombo, Sri Lanka.
 - The focus of the event was to finalise the **Colombo Declaration**, a follow **up on the** <u>UNEA 4 Resolution on Sustainable Nitrogen Management</u> which aims to further the dialogue on Nitrogen management.

Source: DTE

PDF Reference URL: https://www.drishtiias.com/printpdf/increased-emissions-of-n2o