

Centenary of Bose-Einstein Statistics

Source: HT

Why in News?

Recently, the centenary of <u>'Bose-Einstein' statistics</u> was celebrated, honouring **Satyendra Nath Bose's** groundbreaking work on **particle indistinguishability.**

 His contributions laid the foundation for key advancements in quantum mechanics, including the Bose-Einstein Condensate, and continue to shape modern physics.

Who was Satyendra Nath Bose?

- **Early Life:** Born on 1st January 1894, in Calcutta (now Kolkata), Bose was a promising student, excelling in mathematics from an early age.
 - He was inspired by <u>lagadish Chandra Bose</u>, a pioneer in radio wave research, SN Bose ventured into the realm of quantum mechanics, which led to his groundbreaking contributions to the field.
- Bose's Contribution:
 - Bose-Einstein Statistics: In 1924, Bose published a paper, "Planck's Law and the Hypothesis of Light Quanta," where he introduced a new way of counting particles, particularly photons, as indistinguishable entities.
 - Albert Einstein recognized the significance of Bose's paper and expanded on his ideas, leading to the development of Bose-Einstein statistics and the discovery of Bose-Einstein condensates.
 - Bose-Einstein statistics challenged the classical mechanics'
 assumption that particles are distinguishable, where each particle is
 considered unique and can be tracked individually.
 - Bose-Einstein Statistics distinguishes between two classes of particles in quantum mechanics: **bosons and fermions.**
 - Bosons, named after Bose, can occupy the same quantum state, making them indistinguishable. This means one boson cannot be distinguished from another.
 - This property enables phenomena like <u>superconductivity</u> and <u>superfluidity</u>.
 - **Fermions,** in contrast, obey the <u>Pauli exclusion principle</u> (no two electrons can have the same four electronic quantum numbers), which governs the **structure of matter.**
 - Bose-Einstein Condensate (BEC): Bose's work, expanded by Einstein, led to the
 prediction of BEC, a unique state of matter, formed when bosonic atoms are cooled to near
 absolute zero (- 273.15° C), causing them to merge into a single quantum entity
 with wave-like properties.
 - The concept remained theoretical until it was experimentally confirmed in 1995 by Eric Cornell and Carl Wieman, who received the <u>Nobel Prize</u> for their work in 2001.
- Relevance in Modern Physics: Discoveries such as the <u>Higgs boson</u> and advancements in <u>quantum computing</u> highlight the enduring relevance of Bose's principles. Bose-Einstein

- statistics impact not only physics but also cosmology and condensed matter science.
- Awards and Honours: Satyendra Nath Bose, widely known as the Father of the God
 Particle, received the <u>Padma Vibhushan</u> in 1954. In 1959, he was named <u>India's National</u>

 Professor, the highest honour for a scholar, a position he held for 15 years.

UPSC Civil Services Examination Previous Year Question (PYQ)

Prelims

- Q. Which one of the following is the context in which the term "qubit" is mentioned?
- (a) Cloud Services
- (b) Quantum Computing
- (c) Visible Light Communication Technologies
- (d) Wireless Communication Technologies

Ans: (b)

Exp:

- Quantum Supremacy
 - Quantum computers compute in 'qubits' (or quantum bits). They exploit the properties of quantum mechanics, the science that governs how matter behaves on the atomic scale.
- Hence, option (b) is correct.

