

Indian Equatorial Electrojet Model

Source: PIB

Why in News?

Recently, scientists from the <u>Indian Institute of Geomagnetism (IIG)</u>, <u>Navi Mumbai</u> have developed the **Indian Equatorial Electrojet (IEEJ) Model** to accurately predict the **Equatorial Electrojet** over the Indian sector.

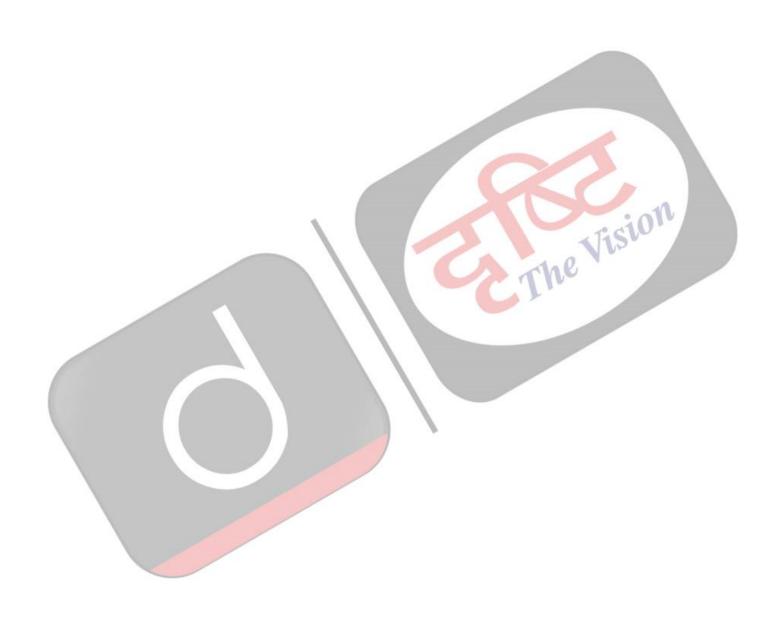
 Ground-based magnetometers at **Tirunelveli station**, near India's southern tip, are used for regular EEJ measurements.

What are the Key Facts About Equatorial Ionospheric Processes?

- Equatorial Electrojet: It is a concentrated, intense electric current flowing within the Earth's ionosphere at the geomagnetic equator at a height of around 105-110 km.
 - India's southern tip is close to the Earth's geomagnetic equator where a strong current exists.
- IEEJ Model Capabilities: It has a web interface that allows simulations of EEJ for different dates and solar activity conditions.
- Applications: The model helps in understanding equatorial ionospheric processes and has practical applications in several ways:
 - Satellite orbital dynamics
 - Global Navigation Satellite Systems (GNSS)-based navigation/positioning
 - Satellite communication links
 - Electrical power grids
 - Transmission lines
 - Oil and gas industry pipelines

Note:

- The geomagnetic equator is the midpoint between the magnetic north and south poles, running around the Earth.
- Unlike the geographic equator, it can shift and change position due to variations in the <u>Earth's</u> magnetic field.

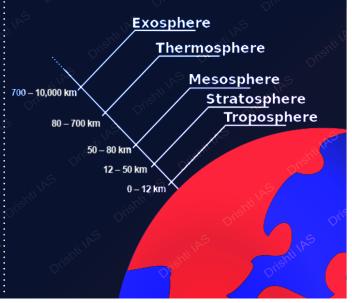

Ionosphere

- It is not a distinct layer like the Troposphere or Stratosphere. Instead, the ionosphere overlaps the mesosphere, thermosphere, and exosphere.
- It's a very active part of the atmosphere, and it **grows and shrinks** depending on the energy it absorbs from the sun.
 - It is an electrically conducting region capable of **reflecting** radio signals back to Earth.
- The **electrically charged atoms and molecules** that are formed in this way are called **ions**, giving the ionosphere its name.

What is the Division of Atmosphere Based on Thermal and Chemical Composition?

Thermal Composition of Atmosphere:

<u>//_</u>


ATMOSPHERE

- One of the main components of Earth's interdependent physical system
- It is composed of about 78% nitrogen, 21% oxygen, and 1% other gases

LAYERS

- Troposphere:
 - Extends from Earth's surface upto 12 kilometers
 - The lowest part of the atmospherethe part we live in
 - Temperature in the troposphere decreases with height
 - The top of the troposphere is called tropopause
 - Densest atmospheric layer
 - Contains about 75% of all of the air in the atmosphere, and 99% of water vapour (which forms clouds and rain)
- Stratosphere:
 - Located between 12 and 50 kilometers above Earth's surface
 - Contains much of the ozone in the atmosphere
 - Ozone molecules in this layer absorb ultraviolet (UV) radiation from the Sun, resulting in an increase in temperature
 - It is nearly cloud- and weather-free
 - It's the highest part of the atmosphere that jet planes can reach
- Mesosphere:
 - Located between about 50 and 80 kilometers above Earth's surface
 - The top of this layer is the coldest place found within the Earth system
 - It forms noctilucent clouds, the highest clouds in Earth's atmosphere
 - Most meteors burn up in this atmospheric layer
 - Sounding rockets and rocket-powered aircraft can reach the mesosphere

- Thermosphere:
 - Located between about 80 and 700 kilometers above Earth's surface
 - Its lowest part contains the ionosphere
 - The temperature of the thermosphere varies between night and day and between the seasons
 - The aurora borealis (northern) and aurora australis (southern) are sometimes seen here
- Exosphere:
 - Located between 700 and 10,000 kilometers above Earth's surface.
 - The highest layer of Earth's atmosphere.
 - There's no weather at all in this layer.
 - Most Earth satellites orbit in this layer.
 - At the bottom of the exosphere is a transition layer called the thermopause.

- Chemical Composition of Atmosphere: On the basis of chemical composition, the atmosphere is divided into two broad zones.
 - **Homosphere:** Homosphere can be defined as the **lowest part** of the Earth's atmosphere. It lies between the heterosphere and the surface of the earth.
 - It is the earth's atmosphere below the altitude of roughly 90 kms where there is an almost-homogenous composition of nitrogen (78%), oxygen (21%), argon (10%), carbon dioxide as well as traces of constituents like dust particles, aerosols and cloud droplets.
 - It is divided into the Troposphere, Stratosphere and Mesosphere.
 - **Heterosphere:** The **atmosphere laying beyond the homosphere** is termed as heterosphere. It extends from **90 km to 10,000 km.**
 - The air is **rare** and the **molecules** are **wide apart.** The mixing of the gases is not possible as the **turbulence** is **not happening there.**
 - It is divided into two main spheres i.e., thermosphere and exosphere.

UPSC Civil Services Examination, Previous Year Question (PYQ)

Prelims

- Q. Consider the following: (2013)
 - 1. Electromagnetic radiation
 - 2. Geothermal energy
 - 3. Gravitational force
 - 4. Plate movements
 - 5. Rotation of the earth
 - 6. Revolution of the earth

Which of the above are responsible for bringing dynamic changes on the surface of the earth?

- (a) 1, 2, 3 and 4 only
- (b) 1, 3, 5 and 6 only
- (c) 2, 4, 5 and 6 only
- (d) 1, 2, 3, 4, 5 and 6

Ans: (d)

Q. A layer in the Earth's atmosphere called lonosphere facilitates radio communication. Why? (2011)

- 1. The presence of ozone cause the reflection of radio waves to Earth.
- 2. Radio waves have a very long wavelength.

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

Ans: (d)

PDF Refernece URL: https://www.drishtiias.com/printpdf/indian-equatorial-electrojet-model

