

# Pushpak, ISRO's Reusable Launch Vehicle

Source: TH

# Why in News?

Recently, **the** <u>Indian Space Research Organisation (ISRO)</u> successfully completed the third and final <u>Reusable Launch Vehicle</u> **Landing Experiment (RLV LEX-03)** for the **Pushpak vehicle**.

 This demonstrated the autonomous landing capability of the RLV under more challenging release conditions and severe wind conditions.

## What is RLV LEX-03 Mission?

#### About:

- During the RLV LEX-03 mission, the Pushpak vehicle was released from an Indian Air Force Chinook helicopter at an altitude of 4.5 km.
- From this point, the winged vehicle autonomously executed cross-range correction manoeuvres approached the runway and performed a precise horizontal landing at the runway centerline.
- The high-speed landing, exceeding 320 km/h, was successfully slowed to around 100 km/h using the vehicle's brake parachute and landing gear brakes.

#### Technologies and Capabilities Demonstrated:

- **Precise Landing**: LEX-03 used multisensor fusion to guide the vehicle for a controlled landing.
- **Autonomous Flight**: The Pushpak vehicle demonstrated its ability to land itself, including correcting its course during descent.
- **Reusable Design**: The mission reused key parts from a previous flight, highlighting the cost-saving potential of RLVs.

## Significance:

- This mission simulated the approach and landing interface, as well as the high-speed landing conditions, for a vehicle returning from space.
  - It validated ISRO's advanced guidance algorithm for longitudinal and lateral error corrections, which is essential for future Orbital Re-entry Missions.
- By testing key technologies like autonomous landing and reusable parts, it paves the way
  for a fully reusable launch vehicle. This could cut launch costs and make space
  missions more efficient.

 $I\!L$ 



#### What are Reusable Launch Vehicles?

#### About:

- Reusable launch vehicles (RLVs) are rockets that can be used multiple times for space missions, unlike traditional expendable rockets where each stage is discarded after use.
- Different from Multi-Stage Rocket:
  - In a typical multi-stage rocket, the first stage is jettisoned (discarded to lighten the load) after its fuel is consumed, while the remaining stages continue to propel the payload into orbit.

- **RLVs recover and reuse the first stage**. After detaching from the upper stages, the first stage uses engines or parachutes to descend and land back on Earth.
  - It can then be **refurbished** for future launches, significantly **reducing costs.**
- Space Agencies Currently Using or Developing RLVs.
  - SpaceX (USA): Falcon 9, with over 220 launches, 178 landings, and 155 re-flights as of May 2023.
  - Blue Origin (USA): New Shepard performs suborbital flights and lands vertically.
  - **JAXA (Japan)** and **ESA (Europe):** Researching reusable launch systems to reduce space access costs.
  - **ISRO (India):** Developed the Reusable Launch Vehicle-Technology Demonstration (RLV-TD) and conducted a successful landing.

Read More: Reusable Launch Vehicle-Technology

# **UPSC Civil Services Examination, Previous Year Question (PYQ)**

# Q. With reference to India's satellite launch vehicles, consider the following statements: (2018)

- 1. PSLVs launch the satellites useful for Earth resources monitoring whereas GSLVs are designed mainly to launch communication satellites.
- 2. Satellites launched by PSLV appear to remain permanently fixed in the same position in the sky, as viewed from a particular location on Earth.
- 3. GSLV Mk III is a four-staged launch vehicle with the first and third stages using solid rocket motors, and the second and fourth stages using liquid rocket engines.

# Which of the statements given above is/are correct?

(a) 1 only

**(b)** 2 and 3

(c) 1 and 2

(d) 3 only

Ans: (a)

PDF Refernece URL: https://www.drishtiias.com/printpdf/pushpak-isro-s-reusable-launch-vehicle