

# **Haber-Bosch Process and Production of Fertilizers**

For Prelims: <u>Haber-Bosch process</u>, <u>Nitrogen</u>, <u>Ammonia</u>, <u>Lightning</u>, <u>Azotobacter and Rhizobia</u>, <u>Volcanic eruptions</u>, <u>Acid rain</u>, <u>organic farming</u>, <u>biofertilizers</u>.

**For Mains:** Importance of the Haber-Bosch process, Implications of Using Fertilizers, Nitrogen cycle.

#### Source: TH

## Why in News?

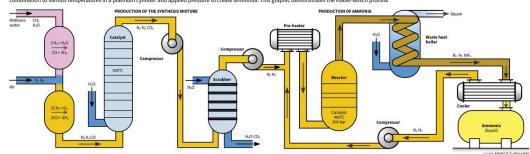
Through the <u>Haber-Bosch process</u>, a hundred million tonnes of <u>nitrogen</u> are <u>extracted from the</u> atmosphere and transformed into fertiliser, resulting in the addition of 165 million tonnes of reactive nitrogen to the soil.

 In comparison, natural biological processes generate an estimated 100-140 million tonnes of reactive nitrogen annually.

## What is the Haber-Bosch Process?

- About:
  - The Haber-Bosch process is an industrial method for synthesizing ammonia by combining nitrogen from the air with hydrogen, significantly contributing to fertiliser production.
- Process:
  - Experimental Setup:
    - The reaction occurs in a steel chamber at a pressure of 200 atm, allowing the **nitrogen-hydrogen mixture to circulate** effectively.
    - A specially designed valve withstands high pressure while allowing the N<sub>2</sub>-H<sub>2</sub> mixture to flow through.
    - Haber implemented a system to transfer heat from the outgoing hot gases to the incoming cooler gases, optimizing energy efficiency.
  - Catalyst Development:
    - Haber initially experimented with various materials looking for suitable filament materials as Catalyst to speed up reaction.
    - Among the tested materials was **osmium**, **which**, **when placed in the pressure chamber with the N<sub>2</sub>-H<sub>2</sub> mixture**, successfully cracked the nitrogen triple bond, **allowing for ammonia production**.
      - **Uranium** was another effective catalyst but both osmium and uranium were too expensive for large-scale applications.
      - The search for a more cost-effective catalyst led to the identification of specific iron oxides as viable options.
- Applications:
  - **Manufacturing:** As a refrigerant in industrial refrigeration systems and air conditioning.
  - Household: An ingredient in household cleaning products, including glass and surface

cleaners.


- Automotive fuel: An internal combustion engine powered by ammonia is being explored as an alternative propulsion technology.
- **Chemicals:** A precursor for various chemicals, including nitric acid and explosives.

## Key Milestones:

- In 1913, the German chemical company opened its first ammonia factory, marking a significant milestone in the production of fertilizers.
- Fritz Haber, a German chemist, won the **Nobel Prize in Chemistry in 1919** for his work on **ammonia synthesis.**

How ammonia is made on an industrial scale

Ammonia is made of nitrogen and hydrogen. Under extreme heat, the molecules separate and form a compound, but it is short-lived because of the heat. The German chemist Fritz Haber heated the N2-H2 combination to various temperatures in a platinum cylinder and applied pressure to create ammonia. This graphic demonstrates the Haber-Bosch process



## What is the Nitrogen Cycle?

#### About:

- Plants obtain reactive nitrogen from the soil by absorbing nitrogen-based minerals like ammonium (NH4+) and nitrate (NO3-), dissolved in water.
- Humans and animals rely on plants for nine essential nitrogen-rich amino acids, as nitrogen makes up about 2.6% of the human body.
- After being ingested, nitrogen returns to the soil through excreta and decomposition
  of dead organisms, but some nitrogen escapes back into the atmosphere as molecular
  nitrogen, leaving the cycle incomplete.

#### Natural Availability of Nitrogen:

- Lightning: Lightning bolts possess enough energy to break the N2 bond, combining nitrogen with oxygen to form nitrogen oxides (NO and NO2).
  - These **oxides mix with water vapour**, forming **nitric and nitrous acids**, which fall as **acid rain**, providing reactive nitrogen to the soil.
- Biological Fixation: Some bacteria, like <u>Azotobacter and Rhizobia</u>, can convert atmospheric nitrogen into reactive nitrogen.
  - These bacteria often have symbiotic relationships with plants such as legumes or aquatic ferns like Azolla, which enhance nitrogen availability in the soil, making them valuable for agriculture.

### Process of Nitrogen Replenishment:

- While legumes can fix nitrogen naturally, most staple crops like rice, wheat, corn, potatoes, cassava, bananas, and other fruits and vegetables depend on soil nitrogen for growth.
- As human populations grow, the depletion of nitrogen in agricultural soils accelerates, requiring the use of fertilizers to restore soil fertility.

### Historical Fertilization Methods:

- Farmers historically cultivated legumes to naturally replenish nitrogen in the soil or applied ammonia-based fertilizers to increase crop yields.
- They also **utilized ammonium-rich minerals from <u>volcanic eruptions</u>** and naturally occurring nitrates found in caves and rocks to enhance soil fertility.

## What is the Impact of Industrial Production of Fertilizers?

Pros:

- The Haber-Bosch process enabled the mass production of synthetic fertilizers, significantly boosting global food supply during the 20th century, contributing to increased life expectancy.
- An estimated one-third of the world's population relies on food produced using nitrogen fertilizers.
  - Without the industrial production of <u>ammonia</u> from nitrogen and hydrogen, it would have been impossible to meet the growing global demand for food.

## Cons:

- Synthetic nitrogen fertilizers, although critical for food production, have adverse environmental impacts.
- Excess nitrogen application leads to plant over-nourishment, boosting bacterial activity and accelerating nitrogen release into the atmosphere.
- This contributes to environmental degradation, including acid rain, land corrosion, and surface water deoxygenation through runoff, causing excessive weed growth in water bodies.

# **Way Forward**

- Promote Sustainable Fertilizer Use: Encourage the adoption of precision agriculture and controlled-release fertilizers to reduce nitrogen waste, minimize environmental damage, and enhance the efficiency of fertilizer usage in farming.
- Invest in Alternative Technologies: Develop and promote eco-friendly alternatives to synthetic fertilizers, such as <u>organic farming</u> practices, <u>nitrogen-fixing crops</u>, and <u>biofertilizers</u>, to mitigate the environmental impacts of chemical fertilizers.
- Strengthen Policy Frameworks: Governments should implement regulations to control fertilizer overuse and incentivize sustainable farming practices, ensuring food security while protecting ecosystems and public health.
- Enhance Global Cooperation: Foster international collaboration to address food distribution disparities, improve access to agricultural innovations, and support capacity-building initiatives for regions facing food insecurity, ensuring equitable solutions to global food challenges.

## **Drishti Mains Question:**

Critically examine the impact of synthetic fertilizers on agriculture and the environment. Discuss sustainable alternatives to mitigate these challenges.

# **UPSC Civil Services Examination, Previous Year Question (PYQ)**

### Prelims:

- Q. With reference to chemical fertilizers in India, consider the following statements: (2020)
  - 1. At present, the retail price of chemical fertilizers is market-driven and not administered by the Government.
  - 2. Ammonia, which is an input of urea, is produced from natural gas.
  - 3. Sulphur, which is a raw material for phosphoric acid fertilizer, is a by-product of oil refineries.

### Which of the statements given above is/are correct?

- (a) 1 only
- **(b)** 2 and 3 only
- (c) 2 only
- (d) 1, 2 and 3

# Ans: (b)

# Mains:

**Q.** Sikkim is the first 'Organic State' in India. What are the ecological and economical benefits of Organic State? **(2018)** 

PDF Refernece URL: https://www.drishtiias.com/printpdf/haber-bosch-process-and-production-of-fertilizers

