

WHO Guidelines on Antimicrobial Resistance (AMR)

For Prelims: <u>World Health Organization (WHO)</u>, <u>Antibiotic Resistance</u>, <u>Pharmaceutical</u> <u>Manufacturing</u>, <u>Generic Drugs</u>, <u>Active Pharmaceutical Ingredients (APIs)</u>, <u>Bacteria</u>, <u>Viruses</u>, <u>Fungi</u>, <u>Parasites</u>, <u>World Bank</u>, <u>Broad-Spectrum Antibiotics</u>, <u>Pneumonia</u>.

For Mains: Rising threat of antimicrobial resistance (AMR) and their impact.

Source: IE

Why in News?

Recently, the <u>World Health Organization (WHO)</u> published "Guidance on wastewater and solid waste management for manufacturing of antibiotics" to tackle the threat of Antimicrobial Resistance (AMR).

What are the Key Highlights of the Guidance?

- About: The document provides a scientific framework for regulators, industry, and other stakeholders to effectively control antibiotic resistance.
- Objective: The guidance aims to offer a scientific foundation for setting and incorporating targets into policies and regulations to prevent antibiotic resistance.
- Non-binding Nature: The guidance is not legally binding. However, it helps ensure consistency across policies and market instruments, promoting transparency and avoiding fragmented approaches.
- Principles and Best Practices:
 - Risk Management Plans: Includes best practices for developing risk management plans, based on proven methods in other sectors like food and water safety.
 - Audit and Transparency: Emphasises the importance of internal and external audits and public transparency.
 - Progressive Implementation: Encourages a stepwise approach with progressive improvement, recognising the need for global supply protection and equitable access to quality antibiotics.
- Target Audiences:
 - Regulatory Bodies: National or regional authorities responsible for overseeing <u>pharmaceutical manufacturing</u> and waste management.
 - Third-party organisations conducting **audits and inspections** of antibiotic production and waste management.
 - **Generic Substitution and Reimbursement Entities:** Bodies responsible for decisions related to **generic drugs** and their reimbursement.
 - **Industrial Actors:** Companies involved in any stage of **antibiotic production** and their collective organisations.
 - Waste Management Services: Entities managing the <u>disposal of antibiotic waste</u> and wastewater.
- Scope of the Guidance:

- Human Health-Based Targets: Focuses on reducing the risk of antibiotic resistance.
- **Ecotoxicological Risks:** Addresses risks to **aquatic life** from antibiotic pollution.
- Coverage: Includes all stages of antibiotic production, from manufacturing <u>active</u> <u>pharmaceutical ingredients (APIs)</u> to finished products and primary packaging.
- **Waste Focus:** Applies to both liquid and solid waste, emphasising liquid effluents, run-offs, and land discharges.
- Assessment Needs: Requires separate risk assessments for manufacturing sites
 producing multiple APIs or products, considering both pre- and post-dilution risks in
 water bodies and the release of resistant bacteria.

What is Antimicrobial Resistance (AMR)?

- About AMR: AMR occurs when <u>bacteria</u>, <u>viruses</u>, <u>fungi</u> and <u>parasites</u> no longer respond to <u>antimicrobial medicines</u>.
 - As a result of drug resistance, antibiotics and other antimicrobial medicines become **ineffective** and infections become **difficult or impossible to treat**, increasing the risk of disease spread, severe illness, disability and death.
- Prevalence of AMR: AMR is one of the top global public health and development threats.
 - It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to 4.95 million deaths.
- Economic Cost of AMR: The World Bank estimates that AMR could result in USD 1 trillion additional healthcare costs by 2050.
 - It can lead to USD 1 trillion to USD 3.4 trillion gross domestic product (GDP) losses per year by 2030.
- Reasons for Increasing AMR:
 - Individual Practices: Many people have a tendency to use antibiotics even for viral
 infections. An antibiotic is of no use for viral infections such as <u>influenza</u>, but consuming it
 can drive up resistance in the population.
 - Medical Practices: Doctors prescribe <u>broad-spectrum antibiotics</u> that work against a wide range of infections.
 - Overuse of broad-spectrum antibiotics leads to increased resistance as antibiotics may not be required in the body.
 - **Diagnostic Challenges:** Doctors often prescribe antibiotics based on **symptoms alone** instead of prescribing **diagnostic tests** to identify the exact cause of the infection.
 - Pharmaceutical Manufacturing: Pharmaceutical waste from antibiotic manufacturing can facilitate the emergence of new drug-resistant bacteria, which can spread globally and threaten our health.
- Common Resistant Pathogens in India:
 - E. Coli (Gut infections): It demonstrated a decrease in susceptibility to most antibiotics, with susceptibility to carbapenem (antibiotics) reducing from 81.4% in 2017 to 62.7% in 2023.
 - Klebsiella Pneumoniae (<u>Pneumonia</u> and Urinary Tract Infections): Its susceptibility to two different medicines from the carbapenem class reduced from 58.5% to 35.6% and 48% to 37.6% between 2017 and 2023.
 - Acinetobacter Baumannii (Hospital Acquired Infections): While no significant change was found in susceptibility, it is highly resistant to even strong antibiotics.

How can AMR be Tackled?

- Public Awareness Campaign: A well-executed long-term public campaign could significantly reduce antimicrobial prescriptions by addressing patient demands and over-the-counter purchases.
- Improved Sanitation: Enhanced sanitation measures, like regular handwashing, waste management, and clean surroundings, help break the chain of transmission of both common and resistant pathogens.
- Reduce Unnecessary Use of Antimicrobials: Doctors should ensure appropriate use of antibiotics and reserve the more potent ones for hospital based patients.
- Promote New and Rapid Diagnostics: Develop and use rapid diagnostic tests to avoid unnecessary antibiotic prescriptions.
- Vaccine Development and Alternative Therapies: Investing in new vaccines and alternatives
 like phage therapy, probiotics, and antibodies will help reduce antibiotic dependency.
- New Drug Development: Incentivizing pharmaceutical companies to develop new antibiotics is essential, given the uncertainties and current effectiveness of existing treatments.

Drishti Mains Question:

Q. Critically examine the primary causes of Antimicrobial resistance and discuss the multifaceted strategies needed to combat its rise.

UPSC Civil Services Examination, Previous Year Questions (PYQ)

Prelims

- Q. What is the importance of using Pneumococcal Conjugate Vaccines in India? (2020)
 - 1. These vaccines are effective against pneumonia as well as meningitis and sepsis.
 - 2. Dependence on antibiotics that are not effective against drug-resistant bacteria can be reduced.
 - 3. These vaccines have no side effects and cause no allergic reactions.

Select the correct answer using the code given below:

- (a) 1 only
- (b) 1 and 2 only
- (c) 3 only
- (d) 1, 2 and 3

Ans: (b)

Q. Which of the following are the reasons for the occurrence of multi-drug resistance in microbial

- 1. pathogens in India? (2019)
- 2. Genetic predisposition of some people
- 3. Taking incorrect doses of antibiotics to cure diseases
- 4. Using antibiotics in livestock farming
- 5. Multiple chronic diseases in some people

Select the correct answer using the code given below.

- (a) 1 and 2
- **(b)** 2 and 3 only
- (c) 1, 3 and 4
- (d) 2, 3 and 4

Ans: (b)

Q. Widespread resistance of malarial parasite to drugs like chloroquine has prompted attempts to develop a malarial vaccine to combat malaria. Why is it difficult to develop an effective malaria vaccine?(2010)

- (a) Malaria is caused by several species of Plasmodium
- (b) Man does not develop immunity to malaria during natural infection
- (c) Vaccines can be developed only against bacteria
- (d) Man is only an intermediate host and not the definitive host

Ans: (b)

Mains

Q. Can overuse and free availability of antibiotics without Doctor's prescription, be contributors to the

emergence of drug-resistant diseases in India? What are the available mechanisms for monitoring and control? Critically discuss the various issues involved. (2014)

PDF Refernece URL: https://www.drishtiias.com/printpdf/whoi-guidelines-on-antimicrobial-resistance-amr

