

Climate Adaptation of Marine Microalgae

For Prelims: Climate Adaptation of Marine Microalgae, Marine Microalgae, <u>Global Warming</u>, <u>Climate</u> <u>Change</u>, Rhodopsin.

For Mains: Climate Adaptation of Marine Microalgae, Developments and their applications and effects in everyday life, Environmental pollution and degradation.

Source: DTE

Why in News?

Recently, Scientists from **the University of East Anglia (UEA), England** have found that eukaryotic phytoplankton, also known as **Microalgae**, have adapted to **cope with** <u>Global Warming</u> and changing ocean conditions.

What is Marine Microalgae?

- Microalgae are photosynthetic microorganisms that can be found in diverse natural environments, such as water, rocks, and soil. They present higher photosynthetic efficiency than terrestrial plants, and are responsible for a significant fraction of the world's oxygen production.
- Marine microalgae play a pivotal role in the **oceanic food chain** and carbon dioxide absorption.
 - However, as climate change continues, global warming is causing surface ocean
 waters to warm, resulting in reduced nutrient availability due to less mixing between
 the surface waters and nutrient-rich deeper waters.
 - So nutrients become scarce at the surface, impacting the primary producers such as microalgae that are present in the top layer.
- This scarcity of nutrients, including iron, impacts the primary producers like microalgae,
 causing them to produce less food and capture less carbon dioxide from the atmosphere.
- Examples of Microalgae: Diatoms, Dinoflagellate, Chlorella, etc.

Note

Microalgae need sunlight and ample iron to produce food and absorb carbon dioxide, but 35% of the ocean's surface lacks sufficient iron for their growth.

What are the Key Findings of the Study?

- Activate of a Protein called Rhodopsin:
 - In response to the changing climatic conditions with the ocean surface, marine microalgae activate a protein called rhodopsin, similar to the protein responsible for low-light

vision in the human eye.

- Rhodopsin allows these microalgae to **thrive by using sunlight as an alternative energy** source to traditional chlorophyll-based photosynthesis.
 - This adaptation is crucial for their survival, especially in regions with nutrient-poor surface waters due to ocean warming.

Capturing Light as Photosynthesis:

- Rhodopsins are the major light capturers in the ocean and can absorb as much light as chlorophyll-based photosynthesis.
- Rhodopsins capture light to generate energy (in the form of adenosine triphosphate or ATP), helping microalgae produce food and capture carbon dioxide.

What are the Implications of this Study?

Environmental Adaptation:

- Understanding the role of rhodopsin in microalgae's adaptation to changing ocean conditions can help mitigate the negative effects of ocean warming on marine ecosystems.
- This knowledge can be essential for **preserving ecosystems that rely on microalgae** as a food source.

Biotechnology Applications:

Similar mechanisms could be employed in biotechnology to enhance the activity
of non-light-dependent microbes, such as yeast. This could be valuable in the
production of various biotechnological products, including insulin, antibiotics, enzymes,
antivirals, and biofuels.

Global Agriculture:

- These findings also draw a parallel with land-based agriculture, where reduced nutrient availability can lead to reduced crop yields.
- Just as microalgae rely on rhodopsin to adapt to changing conditions, there is potential to explore strategies for enhancing crop resilience in the face of <u>Climate Change</u>.

UPSC Civil Services Examination, Previous Year Questions (PYQs)

Q. Which one of the following is the correct sequence of a food chain? (2014)

- (a) Diatoms-Crustaceans-Herrings
- (b) Crustaceans-Diatoms-Herrings
- (c) Diatoms-Herrings-Crustaceans
- (d) Crustaceans-Herrings-Diatomsol:

Ans: (a)

Exp:

- The food chain is defined as the relation between organisms of different trophic levels which are connected to each other for food or energy. In a food chain the flow of energy or food is unidirectional and in a linear sequence. First, plants capture solar energy and then, food is transferred from the producers to decomposers.
- Diatoms are single celled photosynthesising algaefound in seas and oceans.
- Animals like crab, shrimps, lobsters, etc., are crustaceans and they eat diatoms.
- Herrings are fish and they eat crustaceans.
- Thus, Diatoms → Crustaceans → Herrings forms the correct food chain. Therefore, option
 (a) is the correct answer.

