

Carbon Capture and Storage

For Prelims: Global Energy & Carbon Dioxide Emissions, Carbon Storage, Global warming, Climate change, National Centre of Excellence in Carbon Capture and Utilization Mumbai, Afforestation, Paris Agreement.

For Mains: Approaches to Carbon Capture and Storage and Related Challenges.

Source: Reuters

Why in News?

The UK government has reasserted its commitment to **advancing projects aimed at capturing and storing** carbon dioxide (CO_2) emissions as a crucial component of its strategy to achieve net-zero emissions.

What is Carbon Capture and Storage (CCS)?

- About:
 - It is a process designed to **mitigate the emissions of carbon dioxide (CO₂)** generated from industrial processes and the burning of fossil fuels, particularly in power plants.
 - The goal of CCS is to prevent a significant amount of CO₂ from entering the atmosphere and contributing to <u>global warming</u> and <u>climate change</u>.
- Approaches: <u>Carbon capture and storage (CCS)</u> encompasses two primary approaches:
 - The **first method** is known as **point-source CCS**, which involves capturing CO2 directly at the site of its production, such as industrial smokestacks.
 - The second method, direct air capture (DAC), focuses on removing CO2 that has already been emitted into the atmosphere.
 - The recent UK initiatives specifically target point-source CCS.
- Mechanisms of Point Source- CCS: The process of carbon capture and storage encompasses several distinct steps, each contributing to the effective containment of CO₂ emissions:
 - Capture: CO₂ is isolated from other gases generated during industrial processes or power generation.
 - **Compression and Transportation:** Once captured, CO₂ is compressed and transported to designated storage sites, frequently through pipelines.
 - Injection: The CO₂ is then injected into subterranean rock formations, often situated at depths of one kilometer or more, where it remains stored for extended periods, sometimes lasting decades.
- Applications:
 - Mineralization: Captured carbon can be reacted with certain minerals to form stable carbonates, which can be stored safely underground or used in construction materials.
 - This process, known as mineral carbonation, offers a long-term and secure method of carbon storage.
 - **Synthetic Fuels**: Captured CO₂ can be combined with hydrogen (often produced via electrolysis using renewable energy) **to produce synthetic fuels such as synthetic**

- natural gas, synthetic diesel, or even synthetic jet fuel.
- **Greenhouses and Indoor Agriculture:** Captured carbon dioxide can be supplied to greenhouses and indoor farming facilities to enhance plant growth.
- **Dry Ice Production:** Captured carbon dioxide can be used to produce dry ice, which is **solid carbon dioxide at extremely low temperatures.**
 - Dry ice has various applications, including shipping and transportation of perishable goods, medical and scientific purposes, and special effects in the entertainment industry.

Note:

- In India, two National Centres of Excellence in Carbon Capture and Utilization are being established.
 - National Centre of Excellence in Carbon Capture and Utilization (NCoE-CCU) at Indian Institute of Technology (IIT) Bombay, Mumbai
 - National Centre in Carbon Capture and Utilization (NCCCU) at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru.

Challenges:

- Cost and Economics: CCS involves high initial capital costs for building capture, transportation, and storage infrastructure.
 - The cost of capturing CO₂ from <u>flue gases</u> or industrial processes can be significant, affecting the overall viability of CCS projects.
- **Geological Storage Suitability:** Identifying and securing suitable geological formations for long-term CO₂ storage is a challenge.
 - Not all geological formations are appropriate for CO₂ storage due to potential risks of leakage or seismic activity.
- Extended Lifespan of Fossil Fuel Companies: Certain environmental organizations
 raise concerns regarding the effectiveness of CSS, suggesting that its implementation
 might unintentionally prolong the operational viability of fossil fuel companies.
 - This potential consequence could inadvertently hinder the speed of transitioning to more sustainable and cleaner energy sources.

Way Forward

- **Natural Climate Solutions Integration:** Combining CCS with natural climate solutions can enhance its effectiveness.
 - Embracing initiatives like reforestation, afforestation, and sustainable land management can complement CCS efforts by sequestering carbon naturally, promoting biodiversity, and enhancing ecosystem resilience.
- International Collaboration and Knowledge Sharing: To address global climate challenges, countries must collaborate and share knowledge and expertise in CCS.
 - Establishing international forums, research partnerships, and technology-sharing initiatives can accelerate the development and adoption of innovative carbon capture solutions.
- Balancing CCS and Emission Reduction for Climate Action: The <u>United Nations</u> report underscores CCS's potential to align with the <u>Paris Agreement'</u>s market-based mechanisms like carbon trading through carbon credits.
 - However, it emphasizes that emission prevention remains paramount. An inclusive climate strategy mandates both carbon capture technology adoption and proactive emission reduction to effectively address climate change.
 - In line, in terms of Nationally Determined Contribution, India now stands committed to reduce Emissions Intensity of its GDP by 45% by 2030.

UPSC Civil Services Examination, Previous Year Questions (PYQs)

Prelims

Q1. Consider the following agricultural practices: (2012)

- 1. Contour bunding
- 2. Relay cropping
- 3. Zero tillage

In the context of global climate change, which of the above helps/help in carbon sequestration/storage in the soil?

- (a) 1 and 2 only
- **(b)** 3 only
- (c) 1, 2 and 3
- (d) None of them

Ans: (b)

Q2. In the context of mitigating the impending global warming due to anthropogenic emissions of carbon dioxide, which of the following can be the potential sites for carbon sequestration? (2017)

- 1. Abandoned and uneconomic coal seams
- 2. Depleted oil and gas reservoirs
- 3. Subterranean deep saline formations

Select the correct answer using the code given below:

- (a) 1 and 2 only
- **(b)** 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Ans: (d)

Q3. What is/are the advantage/advantages of zero tillage in agriculture? (2020)

- 1. Sowing of wheat is possible without burning the residue of previous crop.
- 2. Without the need for nursery of rice saplings, direct planting of paddy seeds in the wet soil is possible.
- 3. Carbon sequestration in the soil is possible.

Select the correct answer using the code given below:

- (a) 1 and 2 only
- **(b)** 2 and 3 only
- (c) 3 only
- (d) 1, 2 and 3

Ans: (d)