

Huntington's Disease

Source: TH

Why in News?

Recently, a study by researchers from the University of Szeged in Hungary published in *Scientific Reports* has uncovered new insights into <u>Huntington's disease</u> **using fruit flies (Drosophila melanogaster)** as a model organism.

 This innovative approach has provided promising revelations about disease progression and potential therapeutic targets.

What is Huntington's Disease?

About:

- Huntington's disease is a severe <u>neurodegenerative disorder</u> affecting the central nervous system.
- It is caused by a **mutation in the HTT gene**, producing a faulty **huntingtin (Htt)** protein.
 - Mutant Htt proteins are cleaved into toxic fragments, disrupting various cellular processes.

HTT Gene and Polyglutamine Tract:

- The HTT gene codes for the huntingtin protein crucial for nerve cell functioning.
 - Mutations in the HTT gene result in an expanded **polyglutamine tract** in the Htt protein, leading to misfolding and dysfunction.
 - The severity of Huntington's disease correlates with the length of the expanded polyglutamine tract.
- Huntington's disease is inherited in an autosomal dominant manner, which means
 that a person only needs to inherit one copy of the mutated gene from either parent
 to develop the condition.
 - Each child of a parent with Huntington's disease has a 50% chance of inheriting the mutation.

Symptoms:

- Initial symptoms include forgetfulness, loss of balance, and clumsiness in daily tasks.
- Symptoms worsen over time, affecting mood, and reasoning, and leading to uncontrollable movements. Patients face difficulties in speaking, swallowing, and walking as the disease advances.
- Symptoms typically emerge between ages 30-50.

Treatment:

• There is **currently no cure for Huntington's disease**, and available treatments only alleviate symptoms.

What are the Key Highlights of the Study?

- Researchers engineered fruit flies to express the polyglutamine tract of a mutated human HTT gene in their nervous system.
- They used a gene called Gal4 from **baker's yeast(**Saccharomyces cerevisiae), which activates

the expression of genes when bound to a DNA sequence called the upstream activating sequence (UAS).

- The Gal4/UAS system works in the fruit fly genome, allowing the expression of proteins specifically in neurons.
- Fruit flies with the mutated HTT gene displayed neuronal degeneration, impaired climbing ability, and lower viability and longevity.
- A 'control' group of fruit flies with a normal range of glutamine units in the HTT protein showed little to no effect.
- The study found that expressing a **longer glutamine tract** produced symptoms resembling Huntington's disease in humans, while the **shorter tract did not.**
- Researchers found that overexpression of one gene (out of 32 investigated genes in flies) called Yod1 gene in flies effectively eliminated disease-like effects associated with Huntington's disease, including neurodegeneration and motor impairments.

