

Microbes in Plastic Clean-up: Bioremediation

Why in News?

A team of Argentine scientists is using **microorganisms native to** <u>Antarctica</u> to explore the idea of **cleaning up pollution from fuels and, potentially, plastics** in the pristine expanses of the white continent.

- The continent is protected by a **1961 Madrid Protocol** that stipulates it must be kept in a pristine state.
- Over 300 million tons of plastic are produced every year for use in a wide variety of applications.
 At least 14 million tons of plastic end up in the ocean every year, and plastic makes up 80% of all marine debris found from surface waters to deep-sea sediments.

How was the Research carried out on Microbes?

- The researchers collected samples of plastic from the Antarctic seas and studied to see if the microorganisms are eating the plastics or simply using them as rafts.
- The team carried out bioremediation tasks.
- The team helped the microbes with nitrogen, humidity and aeration to optimize their conditions.
- This work uses the potential of native microorganisms bacteria and fungi that inhabit the Antarctic soil, even when it is contaminated - and make these microorganisms eat the hydrocarbons.
- The tiny microbes munch through the waste, creating a naturally occurring cleaning system
 for pollution caused by diesel that is used as a source of electricity and heat for research bases in
 the frozen Antarctic.
- The research on how the microbes could help with plastic waste could have potential for wider environmental issues.

What is Bioremediation?

- It is a branch of biotechnology that employs the use of living organisms, like microbes and bacteria, in the removal of contaminants, pollutants, and toxins from soil, water, and other environments
- Bioremediation is used to clean up oil spills or contaminated groundwater.
- Bioremediation may be done "in situ"-at the site of the contamination-or "ex situ"-away from the site.

 \coprod

What are the Benefits of Bioremediation?

- By relying solely on natural processes, it minimizes damage to ecosystems.
- Bioremediation often takes place underground, where amendments and microbes can be pumped in order to clean up contaminants in groundwater and soil.
 - Consequently, bioremediation does not disrupt nearby communities as much as other cleanup methodologies.
 - "Amendments" to the environment, such as molasses, vegetable oil, or simple air optimize
 conditions for microbes to flourish, thereby accelerating the completion of the
 bioremediation process.
- The bioremediation process creates relatively few harmful byproducts (mainly due to the fact that contaminants and pollutants are converted into water and harmless gases like carbon dioxide).
- Bioremediation is cheaper than most cleanup methods because it does not require substantial equipment or labor.

Source: TH

PDF Refernece URL: https://www.drishtiias.com/printpdf/microbes-in-plastic-clean-up-bioremediation