

#### **Rising Global Temperatures**

For Prelims: Global warming, ocean acidification, India Meteorological Department, Greenhouse Gases (GHG), Methane, Heatwaves, Urban Heat Islands

For Mains: Environmental pollution and degradation, Rising Global Temperatures, Global warming

#### Source: IE

#### Why in News?

The world is witnessing a **concerning trend of record-breaking temperatures** across the globe, exacerbated by **global warming**. From the scorching 56.7°C recorded in Death Valley, California over a century ago to the recent 52.9°C reading in Delhi, temperature extremes are becoming more prevalent as the planet continues to heat up.

If the 52.9°C recorded at a station in Delhi is verified, it would be an all-time high for India.

#### Note:

■ The Mungeshpur weather station in Delhi recorded a record high temperature of 52.9°C, the highest ever in India. However, the <a href="India Meteorological Department (IMD)">India Meteorological Department (IMD)</a> later clarified that the extreme temperature was due to an **error in the sensor or local factors.** 

#### What is the Historical Context of Global Temperature Records?

- Historical High: The highest temperature ever recorded on Earth was 56.7°C in Death Valley, California, in 1913.
  - United Kingdom: Surpassed 40°C for the first time in July 2022.
  - China: Recorded its highest temperature of 52°C in a northwestern town last year.
  - **Europe:** Sicily, Italy, reached 48.8°C in 2021, a record for the continent.
  - India: Rajasthan's Phalodi recorded the highest temperature of 51°C in 2016.
- Global Trends: An analysis shows nearly 40% of the Earth experienced its highest-ever daily temperature between 2013 and 2023.
  - This includes diverse regions, from <u>Antarctica</u> to various parts of Asia, Europe, and the Americas.
  - Global average temperatures are currently about 1.61°C higher than pre-industrial levels.

## Cities experience higher temperatures

For two consecutive days, Delhi reported daytime temperature above 50°C, the highest ever recorded in the city

- Altered thermodynamic, aerodynamic properties of the cities tend to trap more heat, making cities warmer than their rural and suburban counterparts
- Climate change too is causing a significant increase in temperature
- Urbanisation and global
   warming together play a pivotal
   role in the overall
  - role in the overall warming in any city

- All 141 cities show an increase in night-time land surface temperature, with an average increase of 0.53°C per decade
- Urbanisation alone is causing additional warming of about 60%, while the climate change



is responsible for the remaining smaller share

- Tier-II cities in the eastern part of the country have stronger urbanisation-driven warming than even large metros and mega cities
- Tailored city specific action plans are needed for sustainable urban growth for cities with a large heat ≜ exposure

#### How Global Warming is Exacerbating Global Temperatures?

- Definition: Global warming refers to the long-term increase in Earth's average surface temperature due to human activities, primarily the emission of greenhouse gases (GHG) like carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>).
- Greenhouse Gases and Temperatures: GHGs trap heat in the Earth's atmosphere, preventing it from escaping into space.
  - Increased concentrations of these gasses enhance this effect, leading to more heat being retained and higher global temperatures.
- Global Temperature Rise: The planet's average surface temperature has risen about 1°C since the late 19<sup>th</sup> century, a change driven largely by increased GHG emissions into the atmosphere and other human activities.
  - The past decade has seen many of the warmest years on record, with 2023 and 2024 showing unprecedented temperature increases.
  - The period from May 2023 to April 2024 was the warmest 12-month period, with global temperatures about 1.61°C above pre-industrial levels.
- India Compare to Global Warming Trends: India's warming is less than the global average.
  - Indian temperatures have increased by 0.7 degrees Celsius since 1900, while global land temperatures have risen by 1.59°C. When including oceans, global temperatures are now at least 1.1°C higher than pre-industrial levels.
- Global Warming and Heatwaves: Global warming is causing an increase in global temperatures and the frequency of heatwaves.
  - In India Heat waves typically occur from March to June, and in some rare cases, even
    extend till July. On an average, five-six heat wave events occur every year over the
    northern parts of the country.
  - Heatwaves in India are becoming more severe, with heatwave conditions even in February, a winter month for which heatwave thresholds are not defined.
    - The current high temperatures in Delhi and North India seem abnormal compared to the average temperatures from 1981-2010.
    - In the future, temperatures of 45°C and above may become the new normal, and a reading of 50°C will no longer be seen as unusual.
- Geographical Variability: Global warming is not causing a uniform rise in temperatures everywhere. Some regions experience faster warming due to factors like:
  - Polar Amplification: The <u>Arctic</u> and other polar areas are warming much faster due to melting sea ice and permafrost.
  - Land vs Water: Land warms faster than oceans, so continental interiors warm faster than

- coastal regions.
- **Elevation**: Higher elevations experience slower warming as the atmosphere traps less heat.
- Ocean Currents: Regions influenced by warm currents like the Gulf Stream warm faster.
- **Landlocked Countries:** Landlocked areas have less evaporative cooling and the continental effect, leading to more extreme temperature swings.
- <u>Urban Heat Islands (UHIs)</u>: UHIs are metropolitan areas significantly warmer than surrounding regions due to heat-absorbing surfaces and energy use.
  - As global temperatures rise, UHI intensity is expected to increase, amplifying heatwaves in cities.
  - The higher urban temperatures also drive greater fossil fuel-powered cooling, further contributing to **GHG emissions** and warming.
  - Populations in UHIs are especially vulnerable to the health risks posed by the compounded effects of UHIs and climate change.

#### What are the Consequences of Rising Global Temperatures?

- Sea Level Rise: As temperatures rise, glaciers and ice sheets melt, adding water to the oceans and <u>causing sea levels to rise</u>. This inundates coastal areas, displaces communities, and disrupts ecosystems.
  - Global sea level has risen by about 8 inches since 1880 and is projected to rise by at least another foot by 2100. In a high-emissions scenario, it could potentially rise as high as 6.6 feet.
- Ocean Acidification: The oceans absorb a significant amount of the CO2 released into the
  atmosphere. This makes the oceans more acidic, harming marine life and disrupting ocean
  ecosystems crucial for the health of the planet.
  - <u>Hurricanes</u> are expected to become stronger and more intense as the climate warms, leading to increased storm intensity and rainfall rates.
- Droughts and Heat Waves: <u>Droughts</u> and heat waves are expected to become more intense, while cold waves are expected to become less intense and less frequent.
- Wildfire Season: Wildfire season has been prolonged and intensified due to warming temperatures and long-term drought, increasing the risk of fires.
  - Human-caused climate change has already doubled the area of forest burned and is projected to further increase the amount of land consumed by wildfires in Western states by around 2050.
- **Biodiversity Loss:** Rising temperatures and changing weather patterns disrupt ecosystems and habitats, pushing many plant and animal species towards extinction.
- **Climate change:** Extreme weather disrupts food production, leading to shortages and price hikes that harm vulnerable populations.
  - Rising temperatures worsen air quality, increase heat-related illnesses, and facilitate disease spread.
  - The economic consequences are severe, with high costs for repairing infrastructure, declining agricultural yields, and escalating disaster relief.

# GEO-ENGINEERING



Geoengineering means manipulating the earth's climate to lower its temperature to counter global warming

#### **TYPES OF GEO-ENGINEERING**

|                                                    | CARBON DIOXIDE                                                                    | REMOVAL                                    |                                                                    |
|----------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|
| Technology/<br>Method Proposed                     | Proposed<br>Effects/actions                                                       | Potential<br>Side Effects                  | Feasibility/Cost<br>Effectiveness                                  |
| Land Use<br>Management                             | Afforestation/<br>Reforestation                                                   | Minimum<br>Side Effects                    | High feasibility,<br>Low Cost                                      |
| Bio-energy with carbon capture and storage (BECCS) | Biomass harvested<br>and used as fuel                                             | Potential land<br>use conflict             | Comparatively expensive                                            |
| Direct CO <sub>2</sub> Capture                     | Industrial<br>Process                                                             | Minimal                                    | High technical feasibility                                         |
| Fertilization of the ocean                         | Increased CO <sub>2</sub> absorption by promoting algae growth                    | High potential for adverse side effects    | Feasible but not cost-effective                                    |
| Accelerated<br>Weathering                          | Pulverization of silicate rocks                                                   | Potential respiratory<br>health impact     | Could be combined with crop production, a feasible option at scale |
|                                                    | SOLAR RADIATION N                                                                 | MANAGEMENT                                 |                                                                    |
| Stratospheric<br>aerosol Injection                 | For reflecting sunlight back into space                                           | Likely impact on<br>the hydrological cycle | Feasible and potentially highly effective                          |
| Marine cloud<br>brightening                        | Seeding of marine clouds with seawater aerosol                                    | Likely impact on precipitation pattern     | Low to medium cost<br>and feasible at scale                        |
| Giant deflectors<br>in outer space                 | Mirror placed in<br>near earth orbit                                              | Regional climate<br>effects                | Capital-intensive<br>and long gestation                            |
| Surface albedo<br>approaches                       | Painting the roof of the<br>building bright white,<br>Installing desert reflector | Major Impact on<br>Desert Ecosystem        | High labor and maintenance cost                                    |
|                                                    | (V) IICo                                                                          | Sold and the second                        |                                                                    |

#### REGULATION

No specific international or Indian regulations on geoengineering.

#### INDIA'S EFFORTS

- Department of Science and Technology:
  - Geoengineering climate-modelling research programme (since 2013)

#### (V) IISc:

- Initiative to understand the implications of solar geoengineering for developing countries
- Scientists simulated injecting 20 million tonnes of sulphate aerosols into the Arctic stratosphere



#### **Way Forward**

- Six-Sector Solution: Follow the <u>United Nations Environment Programme's</u> roadmap, which
  includes reducing emissions across sectors like energy, industry, agriculture, forests, transport,
  and buildings.
- Carbon Offsetting: Invest in projects that draw down carbon from the atmosphere, such as reforestation or carbon capture and storage.
- Reduction in Greenhouse Gas Emissions: Transition to renewable energy sources like
   Solar, wind, geothermal, and hydro power can significantly reduce our dependence on fossil fuels.
  - Implementing <u>energy-efficient practices</u> in homes, industries, and transportation can drastically cut down on energy consumption.

- Sustainable Agriculture: Adopt climate-smart agricultural practices, such as sustainable irrigation techniques, drought-resistant crop varieties, and agroforestry.
  - Enhance food storage and distribution systems to minimise losses and ensure access to food during extreme weather events.
  - Reducing deforestation, utilising regenerative agriculture techniques, and promoting plantbased diets can all contribute.
- **Support Climate-Vulnerable Populations:** Assist communities most vulnerable to climate change impacts, such as those in low-lying coastal areas and developing countries.

#### **Drishti Mains Ouestion:**

Q. Evaluate the role of global warming in exacerbating heatwaves and its impact on urban heat islands. How can urban planning mitigate these effects?

#### **UPSC Civil Services Examination, Previous Year Questions (PYQs)**

#### **Prelims**

### Q1. Which of the following statements is/are correct about the deposits of 'methane hydrate'? (2019)

- 1. Global warming might trigger the release of methane gas from these deposits.
- 2. Large deposits of 'methane hydrate' are found in Arctic Tundra and under the sea floor.
- 3. Methane in atmosphere oxidizes to carbon dioxide after a decade or two.

#### Select the correct answer using the code given below.

(a) 1 and 2 only

**(b)** 2 and 3 only

(c) 1 and 3 only

(d) 1, 2 and 3

Ans: (d)

#### **Mains:**

**Q.** 'Climate change' is a global problem. How India will be affected by climate change? How Himalayan and coastal states of India will be affected by climate change? **(2017)** 

PDF Refernece URL: https://www.drishtiias.com/printpdf/rising-global-temperatures