

Huge Water Reservoir Found on Mars

Scientists have discovered one of the largest water reservoirs on Mars, in the form of ice layers buried over a kilometer beneath the surface.

Key points

- This discovery was made using measurements gathered by the Shallow Radar (SHARAD) on NASA's Mars Reconnaissance Orbiter.
- SHARAD emits radar waves that can penetrate up to a mile and a half beneath the surface of Mars.
- They **found layers of sand and ice** that were as much as 90% water in some places.
 - The layers formed when ice accumulated at the poles during past ice ages on Mars.
 - Each time the planet warmed, a remnant of the ice caps became covered by sand, which
 protected the ice from solar radiation and prevented it from dissipating into the
 atmosphere.
- This finding is particularly important because the layers of ice are record of past climate on Mars.
 - Studying the geometry and composition of these layers could tell scientists whether climate conditions were previously favourable for life.

Mars Reconnaissance Orbiter (MRO)

- MRO was launched in 2005, on a search for evidence that water persisted on the surface of Mars for a long period of time.
- It contains a host of scientific instruments such as cameras, spectrometers, and radar, which are used to analyze the landforms, stratigraphy, minerals, and ice of Mars.
- The spacecraft carries mainly six instruments:
 - (HiRISE) High Resolution Imaging Science Experiment: This visible camera reveals small-scale objects in the debris blankets of mysterious gullies and details of geologic structure of canyons, craters, and layered deposits.
 - **CTX (Context Camera):** This camera provides wide-area views to help provide a context for high-resolution analysis of key spots on Mars provided by HiRISE and CRISM.
 - MARCI (Mars Color Imager): This weather camera monitors clouds and dust storms.
 - CRISM (Compact Reconnaissance Imaging Spectrometer for Mars): This instrument splits visible and near-infrared light in its images into hundreds of "colors" that identify minerals, especially those likely formed in the presence of water, in surface areas on Mars not much bigger than a football field.
 - **MCS (Mars Climate Sounder):** This atmospheric profiler detects vertical variations in temperature, dust, and water vapor concentrations in the Martian atmosphere.
 - **Shallow Radar (SHARAD) sounder:** It seeks geologic boundaries in the first tens to thousands of meters (up to 4 kilometers) below the surface of Mars.
 - SHARAD probe the subsurface using radar waves using a 15-25 MHz frequency band in order to get the desired high depth resolution.
 - The radar wave return, which is captured by the SHARAD antenna, is sensitive to changes in the electrical reflection characteristics of the rock, sand, and any water

- present in the surface and subsurface. Water, like high-density rock, is very
- conducting, and will have a very strong radar return.

 Changes in the reflection characteristics of the subsurface, such as layers deposited by geological processes in the ancient history of Mars, will also be visible.
- SHARAD was provided by the Italian Space Agency (ASI).

PDF Refernece URL: https://www.drishtiias.com/printpdf/huge-water-reservoir-found-on-mars

