

अमेरिका-भारत परमाणु सहयोग और स्मॉल मॉड्यूलर रिक्टर

प्रारंभकि परीक्षा के लिये:

स्मॉल मॉड्यूलर रिक्टर, यूरेनियम, जीवाश्म ईंधन, कृत्रिम बुद्धमित्ता, भारत-अमेरिका परमाणु समझौता, परमाणु अप्रसार संधि, अंतर्राष्ट्रीय परमाणु ऊरजा एजेंसी

मुख्य परीक्षा के लिये:

परमाणु ऊर्जा से संबंधित भारत का विकास, परमाणु ऊर्जा क्षमता बढ़ाने के भारत के तरीके।

सरोत: इंडयिन एकसपरेस

चर्चा में क्यों?

हाल के घटनाक्रमों से भारत और अमेरिका के बीच असैन्य परमाणु समझौते के पुनरुद्<mark>धार पर प्रकाश पड़ा है</mark> जो होल्टेक इंटरनेशनल के<u>समॉल मॉडयूलर</u> रिकटर (SMR-300) पर केंद्रित है।

 होलटेक का उद्देश्य भारत की ऊर्जा मांगों को पूरा करने के लिये भारत के साथ सहयोग करना तथा SMR परिनियोजन के लियेगेजूदा कोयला संयंत्रों का उपयोग कर एवं संयुक्त विनिर्माण की संभावना तलाश कर स्वच्छ ऊर्जा लक्ष्यों को प्राप्त करना है, जिससे भारत के स्वच्छ ऊरजा संकरमण उददेशयों के साथ समन्वय स्थापित हो सके।

SMR-300 क्या है?


- परचिय: SMR-300 एक उन्नत दाबित हल्का जल रिक्टर है, जिसमें विखंडन के माध्यम से कम से कम 300 मेगावाट (MWe) विद्युत शक्ति
 उत्पन्न करने के लिये लो इनरचिड यूरेनियम ईंधन का उपयोग होता है।
- कॉम्पैक्ट **डज़ाइन:** SMR-300 के लिये पारंपरिक रिएक्टरों की तुलना में काफी कम भूमि की आवश्यकता होती है जिससे यह भारत में मौजूदा कोयला संयंतरों के लिये उपयुक्त है।
- स्वच्छ ऊर्जा परिवर्तन के लिये समर्थन: यह प्रौद्योगिकी भारत के स्वच्छ ऊर्जा लक्ष्यों के लिये महत्त्वपूर्ण है जो बढ़ती ऊर्जा मांगों (विशिष रूप से कृत्रिम बुद्धिमित्ता और डेटा केंद्रों जैसे प्रौद्योगिकी क्षेत्रों में) को देखते हुए जीवाश्म ईंधन के लिये एक प्रतिस्पर्द्धी विकल्प प्रदान करती है।
 - SMR विकसित करके भारत का लक्ष्य वैश्विक परमाणु बाज़ार में एक विश्वसनीय विकल्प के रूप में अपनी स्थिति बिनाना है तथा रूस और चीन जैसे स्थापित हितधारकों के साथ प्रतिस्पर्द्धा करना है।
- भारत में SMR-300 के कार्यान्वयन से संबंधित चुनौतियाँ:
 - परमाणुवीय नुकसान के लिये सविलि दार्यात्व अधिनियम, 2010: इस विधि के तहत मुख्य रूप से उपकरण निर्माताओं पर दायित्व डालकर विदेशी परमाणु आपूर्तिकर्त्ताओं के लिये चुनौतियाँ पैदा होती हैं।
 - परिणामस्वरूप दुर्घटनाओं से उत्पन्न होने वाली संभावित वित्तीय देनदारियों की चिता के कारण कई संभावित साझेदारभारत के परमाणु क्षेत्र में नविश करने से पीछे हट रहे हैं।
 - ॰ **निर्यात विनयिमन: अमेरिकी परमाणु ऊर्जा अधिनयिम,1954 के तहत** होलटेक जैसी अमेरिकी कंपनियों द्वारा भारत में परमाणु उपकरण बनाने पर प्रतिबंध होने से SMR घटकों के स्थानीय उत्पादन की संभावना जटिल हो जाती है।
 - ॰ विधायी सीमाएँ: भारत के मौजूदा विधायी ढाँचे में दायितव संबंधी कानूनों में संशोधन करने के लिये लचीलेपन का अभाव है, जिससे विदेशी संस्थाओं के साथ सहज सहयोग में बाधा उत्पन्न होती है।
 - भारत में SMR-300 से संबंधित भविषय की संभावनाएँ: SMR प्रौद्योगिकी पर सहयोग से अमेरिका-भारत संबंधों में वृद्धि होने के साथ दोनों देशों की तकनीकी बाधाओं और श्रम लागत चुनौतियों का समाधान हो सकता है।

भारत-अमेरिका परमाणु समझौता

- भारत -अमेरिका परमाणु समझौते को अमेरिका-भारत असैन्य परमाणु समझौते के रूप में भी जाना जाता है, जिस पर वर्ष 2008 में हस्ताक्षर किये गए थे। यह समझौता वर्ष 2005 में तत्कालीन भारतीय प्रधानमंत्री मनमोहन सिंह और अमेरिकी राष्ट्रपति जॉर्ज डब्ल्यू बुश द्वारा दिये गए संयुक्त वक्तवय के साथ हुआ था।
 - इस समझौते का उद्देश्य दोनों देशों के बीच असैन्य परमाणु सहयोग को सुविधाजनक बनाना था, जो अमेरिकी नीति में एक महत्त्वपूर्ण बदलाव था, जिसने पहले परमाणु अप्रसार संधि (NPT) पर हस्ताक्षर न करने के कारण भारत के साथ परमाणु व्यापार को प्रतिबंधित कर दिया था।
- भारत-अमेरिका परमाणु समझौता, जिस प्रायः "123 समझौता" कहा जाता है, अमेरिकी कंपनियों को भारत के असैन्य परमाणु ऊर्जा कार्यक्रम के लिये परमाणु ईंधन और प्रौद्योगिकी की आपूर्ति करने की अनुमति देता है।
- भारत-अमेरिका परमाणु समझौते के एक भाग के रूप में, भारत ने अपने असैन्य परमाणु कार्यक्रम के लिये अंतर्राष्ट्रीय परमाणु कर्जा एजेंसी (IAEA) से निरीक्षण की अनुमति देने की प्रतिबद्धता जताई थी।
- भारत को लाभ: भारत को यूरेनियम संवर्द्धन और प्लूटोनियम के पुनर्संसाधन हेतु सामग्री और उपकरण समेत अमेरिका सेदोहरे उपयोग वाली
 परमाणु प्रौदयोगिकी को क्रय करने की पात्रता प्राप्त हुई।
 - ॰ इस समझौते से भारत की ऊर्जा सुरक्षा में वृद्धि होने तथा परमाणु ऊर्जा के माध्यम से इसकी बढ़ती ऊर्जा मांग को पूरा करने में मदद मलिने की उममीद थी।

स्मॉल मॉड्यूलर रिक्टर (SMR) क्या हैं?

- परिचय: IAEA के अनुसार, स्मॉल मॉड्यूलर रिक्टर (SMR) उन्नत परमाणु रिक्टर होते हैं, जिन्हें बेहतर सुरक्षा और दक्षता के लिये डिज़ाइन किया गया है। उनकी विद्युत उत्पादन क्षमता आमतौर पर 30 MWe से लेकर 300 MWe से अधिक तक होती है।
- विशेषताएँ:
 - ॰ स्मॉल: पारंपरिक परमाणु ऊर्जा रिप्क्टरों की तुलना में भौतिक रूप से छोटे, जिससे विभिन्<mark>न स्थानों पर लचीले ढंग से तैनाती की सुविधा</mark> मिलती है।
 - ॰ **मॉड्यूलर:** कारखाने में संयोजन के लिये डिज़ाइन किया गया, जिस<mark>से आसान स्थापना के लिये</mark> एक पूर्ण इकाई के रूप में परविहन संभव हो सके।
 - ॰ **रिक्टर:** विद्युत उत्पादन या प्रत्यक्ष अनुप्रयोगों के लिये ऊष्मा उत्<mark>पन्न करने हेतु</mark> परमाणु विखंडन का उपयोग करते हैं ।
- SMR प्रौद्योगिकी की वैश्विक स्थिति: वैश्विक स्तर पर 80 से अधिक SMR, उन्नत डिज़ाइन और लाइसेंसिंग के विभिन्न चरणों में हैं,
 जिनमें से कुछ पहले से ही संचालित हैं। ये डिज़ाइन विभिन्न श्रेणियों में आते हैं।
 - भूमि-आधारित जल-शीतित SMR: इसमें परिपक्व प्रौद्योगिकियों का उपयोग करते हुए इंटीग्रल प्रेशराइज्ड वॉटर रिफ्टर (PWR) और बॉयलिंग वॉटर रिकटर (BWR) जैसे डिज़ाइन शामिल हैं।
 - ॰ **समुदरी-आधारति जल-शीतित SMR**: समुदरी वातावरण में तैनाती के लिये डिज़ाइन किया गया है, जैसे जहाज़ों पर स्थापित तैरती इकाइयाँ।
 - ॰ हाई टेंपरेचर गैस-कूल्ड (HTGR): 750 डिग्री सेल्सियस से अधिक ताप उत्पन्न करने में सक्षम, जिससे ये विद्युत उत्पादन और विभिन्न औदयोगिक अनुप्रयोगों के लिये कुशल बन जाते हैं।
 - लिकविड मेटल कूल्ड फास्ट न्यूट्रॉन स्पेक्ट्रम SMR (LMFR): सोडियम और सीसा जैसे शीतलक के साथ फास्ट न्यूट्रॉन प्रौदयोगिकी का उपयोग।
 - ॰ **मोल्टन साल्ट रिक्टर SMR (MSR):** इसमें मो<mark>ल्टन फ</mark>्लोराइड या क्लोराइड लवण को शीतलक के रूप में उपयोग किया जाता है, जिससे लंबे ईंधन चक्र और ऑनलाइन ईंधन आपूरत <mark>की क्षमता</mark> प्राप्त होती है।
 - **माइक्रो रिक्टर (MR): अत्यंत छोटें SMR, जो** विभिन्न शीतलकों का उपयोग करके आमतौर पर **10 मेगावाट** तक विद्युत शक्ति उत्पन्न करने के लिये डिज़ाइन किये गए हैं।

नोट: अब तक, विश्व स्तर पर दो SMR परियोजनाएँ परिचालन स्तर पर पहुँच चुकी हैं। जिसमें रूस की अकादमिक लोमोनोसोव फलोटिंग पॉवर यूनिट और चीन की हाई टेंपरेचर गैस-कूल्ड (HTGR) पेबल-बेड शामिल है।

SMR के लाभ और चुनौतयाँ क्या हैं?

m	
SMR के लाभ और चुनौतियाँ क्या हैं?	
SMR के लाभ	SMR से <mark>संबंधति चुनौत</mark> याँ
SMR को अलग-अलग विद्युत आवश्यकताओं को पूरा करने के लिये बढ़ाया	वभिनिन SMR प्रौ <mark>द्योगकि</mark> यों की अलग-अलग वनियामक आवश्यकताएँ होती
या घटाया जा सकता है। मौज़ूदा विद्युत संयंत्रों को शून्य-उत्सर्जन	हैं। बड़े पैमाने पर तैनाती के लिये उचित तकनीक को प्राथमकिता देना
ईंधन से पूरक बनाया जा सकता है या पुराने थर्मल पॉवर स्टेशनों का पुनः	और प्रौद्योगिकी तत्परता स्तर (TRL) में सुधार करना महत्त्वपूर्ण है।
उपयोग क्या जा सकता है।	
SMR आधारति वदि्युत संयंत्रों में ईंधन भरने में प्रत्येक 3 से 7 वर्ष का	SMR प्रतस्पिर्द्धात्मकता के लिये आपूर्ति शृंखला के मुद्दे महत्त्वपूर्ण हैं।
समय लगता है, जबक पारंपरिक संयंत्रों में ईंधन भरने में 1 से 2 वर्ष का समय	लचीली वैश्विक आपूर्ति शृंखला निर्माण के लिये और अधिक प्रयासों की
लगता है, तथा कुछ संयंत्रों को ईंधन भरे बिना 30 वर्षों तक संचलित होने के	आवश्यकता है
लिये डिज़ाइन किया गया है।	
SMR निष्क्रिय सुरक्षा सुविधाओं का उपयोग करते हैं जो बिना विद्युत	SMR से रेडियोधर्मी अपशिष्ट उत्पन्न होता है जसिके लिये भंडारण और
या मानवीय हंस्तक्षेप के रिष्क्टर को बंद करने और ठंडा करने के लिये	नपिटान सुवधाओं की आवश्यकता होती है, जिससे सामाजिक-राजनीतिक
भौतिकी पर निर्भर करते हैं, जिससे अंतर्निहित सुरक्षा सुनिश् <mark>चित होती है।</mark>	प्रतरिध उत्पन्न हो सकता है।
नवीकरणीय ऊर्जा स्रोतों के साथ एकीकृत किया जा सकता <mark>है, जसिसे</mark> न्यून	अभनिव डज़िाइनों के साथ अनुभव की कमी सुरक्षा मानक अनुमोदन को जटलि
कार्बन वाले सह-उत्पाद प्राप्त होते हैं। दैनिक और मौसमी आधार पर ऊर्जा	बनाती है। परमाणु आपदाओं के भय से सार्वजनिक वरिोध उत्पन्न हो सकता
आपूर्ति में उतार-चढ़ाव को कम करता है।	है, जिससे चिताओं को दूर करने के लिये प्रभावी जागरूकता और सहभागिता की
	आवश्यकता होती है ।

भारत की SMR विकास आकांक्षाओं में क्या चुनौतियाँ हैं?

- तकनीकी असमानताएँ: भारत की वरतमान परमाणु प्रौदयोगिकी, जो मुख्य रूप से भारी जल और प्राकृतिक यूरेनियम पर आधारित है, विश्व सुतर पर परमुख हलके जल रिएक्टरों (LWRs) के साथ समन्वय करने में असमर्थ होती जा रही है।
 - ॰ SMR में परविर्तन के लिये, जिसमें विभिनिन प्रकार के ईंधन का उपयोग किया जा सकता है, महत्त्वपूर्ण तकनीकी अनुकूलन और वशिषज्ञता विकास की आवश्यकता होती है।
- उच्च बाह्य लागत: हालाँक SMR को आर्थिक रूप से व्यवहार्य बनाने के लिये डिज़ाईन किया गया है, लेकिन सुरक्षित रिक्टरों के निर्माण और पुरयुकत परमाणु ईंधन के पुरबंधन की लागत **पुरयोजना के वयय को काफी बढ़ा सकती है,** जिससे आरुथिक वयवहारुयता जटलि हो सकती है।
- नियामक संबंधी बाधाएँ: मौजूदा परमाणु नियामक ढाँचे मुख्य रूप से बड़े रिक्टरों के लिये डिज़ाइन किये गए हैं, जिनमें SMR-विशिष्ट विशेषताओं को समायोजित करने के लिये अदयतनीकरण की आवशयकता है।
 - वविधि SMR प्रौद्योगकियों और डज़िाइनों को संबोधित करने वाले एक व्यापक विनयामक ढाँचे की स्थापना महत्त्वपूर्ण है।
- सार्वजनकि सुवीकृति और सुरक्षा धारणा: नवीन SMR डिज़ाइनों के संबंध में लोकसूचना का अभाव, चेरनोबलि आपदा जैसी परमाणु आपदाओं

के भय के कारण सुरक्षा संबंधी चिताओं और वरिध उत्पन्न हो सकता है।

मानव संसाधन विकास: SMR की तैनाती को बढ़ाने के लिये बुनियादी ढाँचे और विनिर्माण सुविधाओं में महत्त्वपूर्ण निवश की आवश्यकता है। भारत
 में SMR संचालन में विशेषज्ञता वाले कुशल कार्यबल की कमी है जो प्रौद्योगिकी के सफल कार्यान्वयन और स्थिरिता के लिये आवश्यक है।

आगे की राह

- भारत को **डिज़ाइन और परिचालन विश्वसनीयता को प्रमाणित करने के लियै** SMR प्रोटोटाइप का निर्माण करना चाहियै। वर्ष 2030 के दशक की शुरुआत तक अपने प्रकार की पहली SMR इकाइयों को चालू करने का लक्ष्य स्थापित करना, जिससे ऊर्जा संक्रमण में सुविधा होगी।
- नवीन SMR डिज़ाइनों को समायोजित करने के लिये मौजूदा परमाणु विनियमों की समीक्षा करना और उन्हें अद्यतन करना। सुरक्षा मानकों को सुनिश्चित करने के लिये परमाणु ऊरजा नियामक बोर्ड के अधीन एक व्यापक नियामक ढाँचा स्थापित करना।
- निजी निवश को आकर्षित करने और परियोजना जोखिमों को कम करने के लिये हरित वित्त विकल्पों सहित नवीन वित्तपोषण मॉडल विकसित करना।
- कौशल अंतराल की पहचान करना और भाभा परमाणु अनुसंधान केंद्र (BARC) के माध्यम से SMR परचालन के लिये प्रशिक्षण कार्यक्रमों
 को लागु करना।
- निरंतर SMR उत्पादन के लिये परमाणु आपूर्ति शृंखलाओं को सुदृढ़ करने के लिये रणनीति विकसित करना । परमाणु अप्रसार संबंधी चिताओं को दूर करने के लिये IAEA और अन्य देशों के सहयोग से SMR डिज़िइन में सुरक्षा उपायों को एकीकृत करना ।

प्रश्न: स्मॉल मॉड्यूलर रिक्टर (SMR) प्रौद्योगिकी अपनाने में भारत को किन चुनौतियों का सामना करना पड़ रहा है, तथा उनकी सफल तैनाती को बढ़ावा देने के लिये सरकार को क्या कदम उठाने की आवश्यकता है?

UPSC सविलि सेवा परीक्षा विगत वर्ष के प्रश्न (PYQs)

प्रश्न. परमाणु रिएक्टर में भारी पानी कार्य करता है? (वर्ष 2011)

- (a) न्यूट्रॉन की गति को धीमा कर देना
- (b) न्यूट्रॉन की गति बढ़ाना
- (c) रिक्टर को ठंडा करना
- (d) परमाणु प्रतिक्रिया को रोकना

उत्तर: (a)

प्रश्न. ऊर्जा की बढ़ती हुई जरूरतों के परिप्रेक्ष्य में क्या भारत को अपने नाभिकीय ऊर्जा कार्यक्रम का विस्तार करना जारी रखना चाहियै? परमाणु ऊर्जा से संबंधित तथ्यों एवं भयों की विवेचना कीजिये। (2018)

PDF Refernece URL: https://www.drishtiias.com/hindi/printpdf/us-india-nuclear-cooperation-and-small-modular-reactors